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Abstract

National forest inventory programs are tasked to produce timely and accurate estimates for a wide range of forest resource variables for a
variety of users and applications. Time, cost, and precision constraints cause these programs to seek technological innovations that contribute to
measurement and estimation efficiencies and that facilitate the production and distribution of an increasing array of inventory data, estimates, and
derived products. Many of the recent innovations have involved remotely sensed data and related statistical estimation techniques. Current
applications of remote sensing in support of national forest inventories are reviewed for three areas: (1) observation or measurement, meaning
using remotely sensed data in lieu of field observations or measurements; (2) estimation, meaning calculation of traditional inventory areal
estimates such as forest area or volume per unit area; and (3) mapping. Future applications focus on two areas: augmenting field measurements
with remotely sensed data obtained from lidar sensors and Internet accessible map-based estimation.
© 2007 Published by Elsevier Inc.
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1. Introduction

The mission of a national forest inventory (NFI)1 is to
produce and report timely and accurate estimates of forest
resources. The variables for which estimates are produced
include, but are not limited to, forest area, volume, condition,
growth, mortality, removals, trends, and forest health. Estimates
are reported for these variables for categories of forest types or
species, ownerships, silvicultural and cutting regimes, and
political units such as municipalities, counties, and provinces or
states. Users of inventory data are many, including forest land
planners and managers, forest industry decision makers, and
environmental groups. Increasingly, forest inventory data and
estimates are used to satisfy international reporting require-
ments (e.g., United Nations Food and Agriculture Organization
Forest Resource Assessment; United Nations Framework
⁎ Corresponding author. 1992 Folwell Avenue, Saint Paul, Minnesota 55108,
USA. Tel.: +1 651 649 5174; fax: +1 651 6495285.
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1 In this context, national forest inventory (NFI) refers to an inventory

conducted at the national level as per the European use of the term, not an
inventory of a national forest as the term might be construed in the United States
of America.
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Convention on Climate Change; Land Use, Land Use Change,
and Forestry; Kyoto Protocol) and to assess the sustainability of
forest management practices in accordance with the criteria and
indicators specified by the Ministerial Conference on the
Protection of Forests in Europe (MCPFE, 1990) and the
Montréal Process (Montréal Conference Working Group,
2005).

Because complete censuses of all trees on all forest lands are
prohibitively expensive and time-consuming, NFIs rely on
sample-based procedures to produce areal estimates of forest
resources such as forest area and volume per unit area. A wide
variety of sampling designs have been used, although most now
have systematic components that prescribe sampling units on
either regularly spaced grids or in regular polygons that
tessellate the area of interest (AOI) (McRoberts et al., 2005).
The sampling units vary with respect to factors such as size,
individual or cluster plots, permanent or temporary plots, and
fixed or variable radius plots. Plot observations include, but are
not limited to, area of forest cover; land ownership, use, and
productivity; tree species, diameter, and height; forest health;
biological diversity; and soil attributes.

As the uses and applications for inventory data and estimates
increase, so do the number of variables requiring observation or
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measurement. For example, European NFIs typically collect
field information on 100–400 variables. As the number of
variables increases, so do the complexity, cost, and time
necessary to conduct the inventories. Thus, NFIs seek
technological improvements for increasing the speed and cost
efficiency of conducting the inventories while simultaneously
increasing the precision and timeliness of an ever widening
array of estimates. The advent of low cost, widely available,
remotely sensed data has been the basis for many of the
important recent technological improvements. Remotely sensed
data have not only contributed to increasing the speed, cost
efficiency, precision, and timeliness associated with inventories,
but they have facilitated construction of maps of forest attributes
with spatial resolutions and accuracies that were not feasible
even a few years ago.

The primary objectives of the discussion are to describe the
methods by which remote sensing contributes support to
modern NFIs. The discussion focuses on three applications of
remotely sensed data: (1) surrogates for field observation or
measurement; (2) ancillary data to improve the precision of
traditional inventory areal estimates; and (3) mapping.

2. Observation or measurement

Remotely sensed data may be used in lieu of more expensive
ground observations and measurements. Aerial photography
has been a traditional source of such data, and its increasing
availability in digital formats has greatly facilitated its uses. For
many NFIs, the cost of travel to and from a plot location is the
greatest portion of the expense of plot measurement. In areas
with sparse forest or a mixture of agricultural and forest land
uses, such as the prairie and plains region of the United States of
America (USA), considerable cost savings may be realized by
initially observing plot locations using aerial photography or
high resolution satellite imagery. The cost of acquiring and
interpreting the remotely sensed data for all plots is much less
than the cost of traveling to and from the large subset of plots
having no forest cover or forest land use. When photography is
available in a digital format even greater cost savings may be
realized. Integrating photography in digital formats with other
spatial data in geographic information systems permits rapid
and easy identification of navigational impediments such as
land forms or swamps and measurement of distances to natural
features such as water and man-made features such as roads and
buildings.

With the advent of active laser and radar sensors, techniques
for obtaining vertical forest structure information from remotely
sensed data are approaching operational feasibility. Inventory
applications for scanning light detection and ranging (lidar)
systems include volume and biomass estimation using both
large- and small-footprint systems. Large-footprint lidar systems
produce estimates of mean height, canopy cover, or canopy
density for an area. Regression models constructed using ground
measurements, the lidar data, and ancillary data may then be
used to predict volume or biomass for stands (Holmgren et al.,
2003; Lefsky et al., 1999; Means et al., 1999; Næsset, 1997;
Nilsson, 1996;Wallerman&Holmgren, 2007-this issue). Small-
footprint lidar systems produce crown width and height
measurements for individual trees. Species-specific regression
models may then be used to predict tree diameter, usually
diameter at breast height (dbh). Height and diameter are then
used as inputs to additional species-specific regression models
for predicting volume, and/or biomass (Parker & Evans, 2004;
Parker & Glass, 2004). Although predictions of diameter and
volume may have considerable uncertainty for individual trees,
if the models are unbiased, then stand- or plot-level estimates of
mean diameter of trees or total volume of growing stockmay still
be acceptably precise. For coniferous plots in the western USA
with basal areas ranging from 0 to 90 m2/ha, Lefsky et al. (1999)
and Means et al. (1999) reported R2N0.85 for relationships
between observed and estimated total above ground biomass and
total basal area.

Radar systems are also under investigation for similar
applications. Fransson et al. (2000) used backscattering
amplitude data from a synthetic aperture radar (SAR) sensor
as inputs to linear regression models for estimating stand-level
stem volume, stem diameter, and tree height. Holström and
Fransson (2003) reported that the combination of optical and
SAR data produced areal estimates of stem volume, age, and
proportion of conifers that were superior to those obtained using
only a single sensor. Kellndorfer et al. (2004) used digital
elevation data collected from the 2000 Shuttle Radar Topog-
raphy Mission (SRTM) with regression models to estimate
vertical vegetation structure. Woodhouse and Hoekman (2000)
used tree growth models to obtain information for polarimetric
airborne SAR scattering components for boreal-type forests.
Data from new polarimetric SAR satellite instruments are
expected to provide additional opportunities for using space
borne microwave remote sensing in forestry applications;
examples of these sensors include the Phased Array type L-
band Synthetic Aperture Radar (PALSAR) of the Advanced
Land Observing Satellite (ALOS) (www.nasda.go.jp/projects/
sat/alos/index_e.html) and RADARSAT 2 (www.radarsat2.
info/).

Many studies reporting use of data from active sensors are
limited in either spatial extent or degree of complexity of forest
conditions. Operational implementation for an NFI requires
comparable results for closed canopy and mixed species forests
and requires estimation methods for understory trees, also.
Regardless of the quality of estimates obtained using data from
active sensors, remote sensing measurement of plots is not
expected to replace completely field measurement any time in
the near future. Nevertheless, approaches based on techniques
such as double sampling for regression using lidar measured
plots in the first phase as described by Parker and Evans (2004)
merit consideration.

3. Areal estimation

3.1. k-Nearest Neighbors

Numerous estimation and mapping approaches have been
successfully used by NFIs. However, in recent years, nearest
neighbor techniques have received considerable attention and
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merit special discussion. This discussion focuses on the use of
the k-nearest neighbor (k-NN) technique with satellite imagery,
but there are other variations such as most similar neighbor
(MSN) (Hassani et al., 2004; Moeur & Stage, 1995) and
gradient nearest neighbor (GNN) (Ohmann & Gregory, 2002).
Further, all variations can be used equally well with sources of
ancillary information other than satellite imagery.

Pioneered for forest inventory purposes by the Finnish NFI
(Tomppo, 1991, 1996; Tomppo & Halme, 2004), the k-NN
technique is a non-parametric, multivariate approach to im-
puting observations or combinations of observations from
sampling units to estimation or mapping units. For an AOI,
the set of all pixels for which predictions of inventory variables
are desired is denoted the target set, and the set of all pixels
containing centers of sampling units or plots as is denoted the
reference set. The plots are assumed to be of adequate size to
describe the pixels containing their centers. Thus, the elements
of the reference set are equivalently characterized as either pixels
or as plots. For each pixel, p, in the target set, I={i1(p),…,ik(p)}
denotes the set of k plots in the reference set nearest to p in
the covariate or feature space with respect to a distance metric, d.
Common selections for the distance metric are Mahalanobis
distance (Kendall & Stewart, 1968) or weighted Euclidean
distance,

di;p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL
l¼1

vlðxi;l � xp;lÞ2
vuut ; ð1Þ

where di,p denotes the distance in feature space between pixels i
and p; l indexes the feature space covariates; and the set {vl}
consists of weights associated with individual covariates. The
k-NN prediction for pixel, p, is,

̂yp ¼
X
i ϵ I

wi;p yi; ð2Þ

where yi is the vector of observations for the ith plot in the
reference set, and ŷp is the vector of imputed or predicted
values for pixel p. The weight, wi,p, of plot i to target pixel p is,

wi;p ¼
d�t
i;pX

i ϵ I

d�t
i;p

i ϵ I

0 otherwise

;

8>><
>>: ð3Þ

where tε [0,2]. Common selections for t include t=0, which
weights all reference set plots equally, and t=1 or t=2 which
weight plots inversely to their feature space distance or distance
squared from pixel p. When t=0, the k-NN prediction reduces
to,

̂yp ¼
1
k

X
i ϵ I

yi:

3.2. Expansion factors

When using plot observations and measurements as the basis
for estimates of inventory variables for larger AOIs (e.g.,
municipalities, counties, provinces or states), the per unit area
observation for each plot must be multiplied or expanded by the
area the plot represents to obtain an estimate of the total for the
AOI. For example, if 75 trees are observed on a 0.1 ha plot, then
the observation converts to a per unit area observation of
75 trees
0:1 ha ¼ 750 trees=ha. If the sampling design features, for
example, one plot per 2000 ha, then one possibility for the plot
expansion factor is 2000 ha, in which case the total trees
represented by the plot observation is 1.5 million trees. More
accurate large area estimates may be obtained when plot
expansion factors are derived from landscape features. For
example, if the plot whose observation of 750 trees/ha is the
only plot on a particular soil type and there are 2500 ha of this
soil type in the AOI, then a plot expansion factor of 2500 ha
would contribute toward a better estimate of total trees on the
landscape than would the 2000 ha expansion factor. This
approach may be used to obtain expansion factors for both fixed
and variable area plots. In the USA, where strata for stratified
estimation are derived from classified satellite imagery, ex-
pansion factors are calculated as the ratios of strata sizes and the
numbers of plots assigned to strata.

Remotely sensed data may contribute substantially to
increasing the quality of expansion factors and the precision
of estimates. The Finnish NFI uses an innovative application of
the k-NN technique in which the expansion factor for the jth
plot in the uth AOI is calculated as,

cj;u ¼
X
p ϵ U

wj;p; ð4Þ

where p denotes a pixel in the AOI, and wj,p is calculated using
Eq. (3). In essence, the plot expansion factor is a function of the
number of pixels in the AOI that are close in feature space to the
pixel containing the plot center (Tomppo, 1996). Feature space
and the corresponding distance metric need not be restricted to
satellite image data but may include other ancillary data
(Tomppo & Halme, 2004).

3.3. Stratified estimation

Due to budgetary constraints and natural variability,
sufficient numbers of plots frequently cannot be measured to
satisfy precision guidelines for the estimates of many inventory
variables unless the estimation process is enhanced using
ancillary data. Classified satellite imagery has been accepted as
a source of ancillary data that can be used with stratified
estimation techniques to increase the precision of estimates with
little corresponding increase in costs. The genesis of this
approach is the statistical technique double sampling for
stratification as used by NFIs with aerial photography. In the
first phase, an initial, relatively dense, systematic sample is
observed using aerial photography. The primary purpose of the
first phase is to assign these sample units or photo plots to
classes, often with respect to the size, density, and species of
trees observed on the photography. Information from these
classes, sometimes augmented with ancillary data such as soil,
land use, and other maps, is used to define strata. The relative
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areal extent of each stratum is estimated by the proportion of
first phase photo plots assigned to the stratum. The second
phase consists of field measurement of a subset of the first phase
plots. The data for the two phases are combined using stratified
estimation formulae (Cochran, 1977). The effectiveness of a
stratification is often quantified using relative efficiency, RE,
defined as,

RE ¼ VarðȲ SRSÞ
VarðȲ StrÞ ; ð5Þ

where Var(ȲSRS) is the variance obtained under the assumption
of simple random sampling (SRS) and no stratification, and
Var(ȲStr)is the variance obtained using stratified estimation.

Poso et al. (1984) and Poso et al. (1987), using the double
sampling for stratification technique, obtained the first phase
measurements from satellite imagery and defined strata on the
basis of classifications of the imagery. Muinonen and Tokola
(1990) considered the satellite image information to constitute
complete coverage of the AOI rather than just a first phase
sample and obtained RE=7.20 for growing stock volume in
Finland. Nilsson et al. (2003) used a segmentation approach for
defining image-based strata and obtained RE=3.72 for a
national estimate of total timber volume in Sweden. McRoberts
et al. (2002b) derived strata from the National Landcover
Dataset, (NLCD) (Homer et al., 2004; Vogelmann et al., 2001),
a 21-class land cover map of the conterminous USA based on
Landsat Thematic Mapper (TM) imagery and other ancillary
data. The NLCD forest classes were aggregated into one
stratum, the non-forest classes into a second stratum, and two
additional edge strata were constructed, one on either side of the
forest/non-forest boundary. For forest area in the north central
USA, they obtained 2.00bREb3.50, and for volume they
obtained 1.25bREb1.75. Hoppus and Lister (2003) began with
a forest/non-forest classification, reclassified the center pixel in
each 5×5 pixel block into one of 26 classes, depending on the
number of pixels classified as forest in the 5×5 pixel block, and
then aggregated the 26 classes into a smaller number of strata.
For estimates of forest area in the northeastern USA, they
obtained 1.69bREb2.12. McRoberts et al. (2006) proposed an
approach to stratification in which a logistic regression model is
used to predict proportion forest area for each pixel. Strata are
defined in terms of categories of predicted proportions, p̂ (e.g.,
0.0≤ p̂≤0.1, 0.1b p̂≤0.5, 0.5b p̂≤0.9, and 0.9b p̂≤1.0). For
forest area and volume in the north central USA, RE=5.87 and
RE=2.71, respectively, were obtained.

Some precautions are necessary when strata are derived
using data from plots that are to be stratified, because an
assumption underlying stratified estimation is that the plots
assigned to a stratum are a random sample of the stratum. In
particular, this assumption must be carefully considered when
using the k-NN method with a small k-value to obtain
predictions from which strata will be derived. The concern is
that for small k-values, the set of plots assigned to each stratum
will be very similar to the mathematical union of the sets of k-
nearest neighbors used to obtain predictions for the pixels
assigned to the stratum. The result is that the plots assigned to a
stratum may not be a random sample of the stratum. Two
approaches to circumvent this problem may be considered.
First, the AOI may be subdivided into mutually exclusive
subareas, and the plots in one subarea may be used as the
reference set for calculating predictions for the other subarea.
Second, large values of k may be considered for k-NN
prediction. The second approach is supported by the finding
of Breidt and Opsomer (2004) that for regression-based
predictions, even relatively small calibration data sets circum-
vent the problem.

3.4. Efficiencies

The contribution of remotely sensed data to increasing areal
estimation efficiency is illustrated with Finnish and American
examples. For eight AOIs in eastern Finland, each of
approximately 10,000 ha, approximately 500 plots per AOI
would be necessary to obtain a standard error of 5% for the
estimate of mean volume of growing stock. However, using
satellite imagery to calculate expansion factors using Eq. (5), a
sampling intensity of only one plot per 288 ha (35 plots per
10,000 ha) produced a standard error of the estimate of mean of
approximately 5% (Katila & Tomppo, 2001; Katila, 2006). Thus,
given that remote sensing costs for the Finnish NFI are only
approximately 5% of total inventory costs, this greater than 10-
fold reduction in sampling intensity means that remotely sensed
data contributes substantially to increasing inventory efficiency.

For the American example, REs obtained using stratified
estimation may be translated into cost savings. For two large
study areas in the State of Minnesota, USA (21.8 million ha)
McRoberts et al. (2002a) reported RE=5.59 and RE=5.38 for
stratified estimation of forest area when using strata derived
from classified satellite imagery. RE calculated using Eq. (5)
may be considered the factor by which a sample size must be
increased to achieve the same precision under the assumption of
simple random sampling (i.e., not using the remotely sensed
data) as was achieved using stratified estimation (i.e., using
remotely sensed data). Cost savings were calculated by
applying the mean, RE=5.49, to the entire State under four
assumptions: (1) the State is approximately 38% forested, (2)
only forested plots are visited by field crews, (3) the cost of
measuring a plot is approximately US $800, and (4) the
sampling intensity is approximately one plot per 2400 ha. For
these conditions, the costs savings were US $12.4 million when
using stratified estimation with strata derived from classified
satellite imagery.

4. Map products

4.1. Answering the “Where?” question

Traditionally, NFIs have used data collected from field plots
to respond to the user question “How much?” by reporting plot-
based estimates of forest resources for municipalities, counties,
and provinces or states. Increasingly, however, users are also
asking “Where?” and are requesting that NFIs report not only
tabular estimates but also produce maps depicting the spatial
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distribution of forest resources. Thus, NFIs have initiated efforts
to construct maps of forest resources, often using satellite
imagery of at least moderate resolution.

In addition, maps based on inventory data may be used to
investigate potential sampling designs. The Finnish NFI, which
uses a combination of permanent and temporary plots, has used
border-to-border forest attribute maps based on satellite imagery
and previous NFI data to select sampling designs since the 1990s
(Henttonen, 1991; Tomppo et al., 2001). For each potential
design, simulated samples of size 1000–2000 are drawn from the
maps, and estimates and standard errors are calculated for
variables such as growing stock volume per unit area, volume per
unit area by species, and proportion forest by species. By
combining travel and measurement costs for each design with
simulated precision estimates, potential designsmay be compared
and an appropriate selection may be made. This approach was
used for the entire Finnish NFI9 (1996–2003). In addition, in
northern Finland, a land cover map constructed frommulti-source
inventory data using the k-NN technique was used to derive a
stratified sampling design and formed the basis for post-
stratification in the estimation phase. The land cover classes
correspond to potential land use classes such as forest land, poorly
productive forest land, or permanently treeless areas.

Inventory mapping applications generally are expected to
satisfy several requirements simultaneously. First, the mapping
approach should be multivariate because compatibility among
the maps of related variables is essential. Separate, univariate
maps of variables such as forest land and volume per unit area
inevitably depict high volume for some pixels that are also
depicted to have little or no forest land. Second, the mapping
approach must accommodate the varied forms of the distribu-
tions of inventory variables. For example, most parametric
multivariate techniques require that the suite of variables have a
multivariate Gaussian distribution. Third, the approach should
be versatile to facilitate construction of similar and comparable
maps for diverse and geographically separated AOIs using
different types and resolutions of satellite imagery. The k-NN
method seems ready-made for NFI mapping applications. The
k-NN method is multivariate, non-parametric, intuitive, and
easy to implement. Because it is non-parametric, no assump-
tions regarding the distributions of variables are required. In
addition, for small values of k, k-NN predictions preserve much
of the correlation structure among observations of inventory
variables. Further, subject to a few requirements such as the plot
observation being an adequate sample of the image pixel, the k-
NN technique can be readily implemented using a variety of
reference data and resolutions of imagery. Finally, as the Finnish
NFI has demonstrated, ancillary data such as soil and land use
maps may be used to enhance the quality of k-NN predictions;
e.g., by avoiding prediction of positive volumes predictions on
non-forest land (Katila & Tomppo, 2001).

The k-NN technique has been used extensively to map forest
attributes: volume in Finland (Tokola et al., 1996; Tomppo,
1996); forest cover type and basal area in the USA (Franco-
Lopez et al., 2001); proportion forest in the USA (McRoberts
et al., 2002a); age, height, and volume in Sweden (Reese et al.,
2003); age and volume in Sweden (Holmström & Fransson,
2003); forest cover type in Austria (Koukal et al., 2005); species
groups in Norway (Gjertsen, 2007-this issue); volume,
stocking, diameter, height, and basal area in Ireland (McInerney
et al., 2005); and forest area, basal area, volume, and stem
density in the USA (McRoberts et al., 2007-this issue). Such
maps are used operationally in forest management planning and
industrial timber procurement planning (Tomppo, 1996), as
well as ecological applications (Pakkala et al., 2002). The
georeferenced nature of the maps facilitates integrating data
such as a growing stock map with other georeferenced data such
as maps of soil classes, site fertility, cumulative growing season
temperature, and meteorological information maps. For exam-
ple, growing stock and soil fertility maps may be integrated to
predict forest productivity and to analyze potential forest
production scenarios for areas of arbitrary sizes as ordered by
clients. The Finnish NFI has already used this approach to
develop and analyze harvest scenarios at the municipality level.
For this approach, sufficiently accurate increment predictions
for individual mapping units or small aggregations of mapping
units are necessary.

4.2. Accuracy assessment of map products

Accuracy assessments of forest attribute maps have two
components, bias and precision. For most reported k-NN
applications, bias is not a severe inhibiting factor at either the
pixel or multiple pixel levels (e.g., Katila & Tomppo, 2001;
Tomppo & Halme, 2004). The precision of maps may be
evaluated at both the individual and multiple pixel levels. The
precision of pixel level predictions have been widely reported
(e.g., Franco-Lopez et al., 2001; Katila & Tomppo, 2001;
Tokola et al., 1996; Tomppo & Halme, 2004) with coefficients
of variation usually high, often in the range 0.65–0.80 for mean
growing stock volume. However, the precision can be increased
and bias can be decreased using techniques reported by Halme
and Tomppo (2001) and Tomppo and Halme (2004).

Although the classifications of individual pixels may be
relatively poor, the distribution of pixel classifications may still
be approximately correct. For example, using ground plot
observations, Franco-Lopez et al. (2001) found that the
proportions of individual pixels correctly classified with respect
to cover types ranged from 0.58 to 0.69, but that the proportions
of pixels classified into each cover type for a large AOI were
approximately correct. Similarly, Tokola (2000) reported that
estimates for volume were always more accurate for multiple
pixel AOIs than for individual pixels when using sample plot
data for comparisons. The phenomenon has also been reported
by Katila and Tomppo (2001), and Tomppo et al. (2002).
McRoberts et al. (2007-this issue) found forest area, basal area,
volume, and stem density estimates obtained by aggregating
pixel-level predictions for circular AOIs of radius 10 km to be
not statistically significantly different than estimates obtained
directly from inventory plot observations. When pixel predic-
tion errors for continuous variables are independent and
distributed with zero mean, and when the number of pixels in
the AOI increases, then the variance of the estimate for the AOI
converges to zero on the basis of the law of large numbers.

http://dx.doi.org/10.1016/j.rse.2006.08.018
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Estimating the precision of estimates for multiple-pixel AOIs
obtained by aggregating the pixel predictions is a difficult task
because of spatial correlation among the predictions and
residuals. Some discussion of this topic is provided in the
next section.

4.3. Map-based estimation

Frequently, the tabular estimates of forest inventory variables
provided by NFIs are not adequate to satisfy all user
requirements; for example, AOIs based on ecological rather
than political boundaries or fragmented AOIs. For these kinds
of analyses, users may request direct access to inventory data so
they can conduct their own analyses. When the requests do not
require exact plot locations, there are few constraints on data
access. However, if exact locations are required, then several
issues must be considered. First, revealing exact locations may
entice users to visit the plots to obtain additional information,
thus artificially disturbing the sampling location and contribut-
ing to bias in inventory estimates. Second, plots may be located
on private land, and while land owners usually permit access by
inventory field crews, they are generally less receptive to access
by non-inventory personnel. For some NFIs, these situations
have potentially serious impacts. For the NFI of the USA, which
must obtain owner permission to access plots on private land,
unauthorized user visits to plot locations may jeopardize future
access by inventory field crews. In addition, the program is
prohibited by public law from revealing the exact locations of
plots on private land. Thus, if exact plot locations are required
for a user's analysis, policy constraints may prohibit the
inventory program from accommodating the user's data request.

Additionally, users may require estimates for AOIs much
smaller than those reported by an NFI. For some forest
inventory variables, the precision of estimates based on plot
data only for these small areas may be adequate. For example,
Katila and Tomppo (2001) and Katila (2006) reported errors for
mean volume of growing stock of 13% for forest holding as
small as 100 ha. However, for many small AOIs of interest, the
number of plots is not sufficient to obtain estimates with
acceptable precision.

An alternative to plot-based estimation that addresses both
the plot location security and small AOI problems is to construct
maps of forest resources that are sufficiently unbiased that users
may obtain estimates for small areas that are comparable to
those obtained using dense field plot data alone, and more
precise than those obtained using sparse field plot data. This
alternative requires public access to the maps, probably via the
Internet, and estimation algorithms that are sufficiently fast that
the tolerance levels of users are not exceeded.

A complex component of map-based estimation is dealing
with spatial correlation among observations on which the maps
are based and among mapping unit predictions. The primary
effect of spatial correlation is in the estimation of variances.
Thus, if users are only interested in estimates of forest resources
for their AOIs and have no requirement for measures of
uncertainty, then the issue is not crucial. However, NFIs have
traditionally provided not only forest resource estimates but also
standard errors or confidence intervals associated with those
estimates. For plot-based estimation, the small number of plots
(at least relative to the number of pixels in an AOI) mitigates
much of this complexity, particularly when the distances
between plots exceed the range of spatial correlation. However,
for map-based estimation, and for any remote sensing aided
estimation method, the relatively small pixel separation
distances virtually guarantee that spatial correlation cannot be
ignored if defensible variance estimates are required. Thus,
variance estimates for means, Ȳ , over multiple pixel AOIs must
be expressed as,

VarðȲ Þ ¼ Var
1
N

XN
i¼1

̂yi

 !
¼ 1

N2

XN
i¼1

XN
j¼1

Covð ̂yi; ̂yjÞ

¼ 1
N2

XN
i¼1

Varð ̂yiÞ þ
XN
i p

XN
j

Covð ̂yi; ̂yjÞ
" #

ð6Þ

where N is the number of pixels in the AOI, and ŷi and ŷj are
predictions for the ith and jth pixels, respectively. For i≠ j, it is
not possible to assume Cov(ŷi,ŷj)=0. Further, the expression for
Cov(ŷi,ŷj) may be complex and typically must incorporate the
spatial correlation among prediction errors. Estimation techni-
ques for regression model-based approaches have been
developed (McRoberts, 2006), and techniques for k-NN
predictions have been developed as a joint effort between the
Finnish and American NFIs (McRoberts et al., 2007-this issue).
In addition, the large number of pixels for most AOIs means that
substantial computing resources may be required, even for
moderately sized AOIs.
5. Summary and conclusions

Remote sensing currently enhances NFIs in four primary
ways: (1) providing faster and less expensive observation or
measurement of some forest attributes, (2) increasing the
precision of large area inventory estimates, often via stratified or
weighted estimation, (3) providing inventory estimates with
acceptable bias and precision for small areas for which
sufficient field data are not available, and (4) producing forest
thematic maps that can be used for purposes such as for timber
production, procurement, and ecological studies. In addition,
maps based on both field and remotely sensed data may be
considered models of forests that can be used for applications
such as simulating inventory sampling designs and comparing
their efficiencies. Most inventory sampling designs are selected
to support the objective of calculating estimates using field data.
The efficiencies of inventories could be increased substantially
if, in the planning phase, designers could rely on the availability
of satellite based remote sensing data.

Both parametric and non-parametric estimation methods
have been tested and applied in forest inventory applications.
The keen interest in the non-parametric k-NN method is partly
motivated by the desire to estimate simultaneously the large
number of variables of interest.

Estimation of uncertainty in forest inventories is never a trivial
task due to spatial correlation and trend-like changes in the
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variables of interest. The task becomes even more difficult when
using multi-source data for which the spatial dependencies are
particularly complex. Estimation of pixel-level bias and precision
has received much attention in the literature. However, for
multiple pixel AOIs, the methods have often been empirical and
have been characterized by comparisons of estimates derived in
two different ways, one of which produces less but known
precision. Recent developments emphasizing derivations of
analytic methods for error estimation are promising.

Two primary conclusions may be drawn from this brief
review of current and future remote sensing applications in
support of NFIs. First, satellite imagery has contributed greatly
to the ability of NFIs to produce more timely, cost efficient, and
precise inventory estimates and has greatly facilitated construc-
tion of the spatial products that are in increasing demand.
Second, technologies that are now on the horizon have the
potential to alter radically the ways in which trees are measured,
estimates are produced, and products are delivered. The use of
digital remote sensing data of different spatial and spectral
resolutions can be expected to be an essential part of large area
forest inventories. The future depends to a great degree on the
availability of data and the development of statistically sound
methods.
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